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Abstract—This paper presents a model for the fracture process zone near the tip of a steadily
propagating plane strain teasile crack. The material is assumed to be clastic-ideally plastic and
completely incompressible. The macroscopic plastic deformation near the advancing crack tip is
modeled by a slip element approach in which dislocations are continuously distnbuted over a planar
region. The fracture process zone is modeled by a continuous distribution of dislocations collinear
with the advancing crack tip. The results of the study reveal the influence of the fracture process
zone on the slip line pattern within the crack tip plastic zone and on the clastic-plastic boundary.
The fracture process zone model is also shown to give an accurate and physically reasonable estimate
of the crack tip opening angle associated with continued ductile stable crack growth.

INTRODUCTION

In recent years, the clastic -plastic stress and deformation ficlds near the tip of a quasi-
statically propagating tensile crack have been the subject of widespread theoretical attention.
The motivation for this interest lies in the observation, e.g. Clark e of. (1978), that specimens
of ductile metal can exhibit extensive stable crack growth prior to tailure. The development
of engineering analysis methods for lawed structures requires a sound toundation based
upon a realistic fracture criterion for continued ductile crack growth.

Due to the mathematical complexity of the ficld cquations governing the crack tip
deformation processes, the most intense rescirch efforts have focused on the asymptotic
analysis of growing cracks under conditions of small-scale yielding, These studies, which
are rigorously valid at vanishingly small distances from the crack tip, employ slip line
methods similur to those used by Rice (1967) in the study of plastic deformation near a
stationary crack. Inone ofthe first ol such works, Chitaley and McClintock (1971) obtained
solutions for steady crack growth in anti-planc shear (mode [H). They discovered the
presence of both a primary plastic zone ahead of the propagating crack and a secondary
plastic zone along the crack surfaces. Their study also identified the logarithmic strain
singularity found by Rice (1968) in a preliminary investigation of steady state tensile crack
growth (mode I). Slepyun (1974) reported similar findings in a study of plane strain shear
crack growth (mode 1) for a material obeying the Tresca yield condition. Rice and Sorenson
(197%) performed an asymptotic analysis of a propagating tensile cruck valid tor general
steady or unsteady growth regimes. Their analysis employed an assembly of crack tip plastic
deformation sectors similar to the Prandtl stip line ficld associated with a stationary tensile
crack. A logarithmic crack tip strain singularity was identified and a fracture criterion based
upon the attainment ol a critical crack opening displacement at a characteristic material
distance behind the crack tip was proposed. Rice e af. (1980) tater noted that the Prandtl
slip line conliguration contained a velocily discontinuity corresponding to negative plastic
work, rendering itinappropriate as an asymptotic ficld for the growing crack. They proposed
a modifted asymptotic ficld containing a scctor of elastic deformation that intervenes
between the primary plastic zone ahead of the crack tip and the secondary plastic zone
along the crack surfaces. An asymptotic analysis was then given for a material satisfying
von Mises® yield condition under the assumption of elastic incompressibility at vanishingly
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1138 S. G. RUSSELL

small distances from the crack tip. The fracture criterion proposed in the earlier work of
Rice and Sorenson (1978) was again found te be suitable for the growing tensile crack.

Rice (1982) generalized the results of previous asvmptotic analyses for growing tensile
and anti-plane shear cracks (modes I and . He presented a tormulation valid for
anisotropic materials with arbitrary vield condition and associated flow rule. Detailed
results for isotropic materials of the Huber-Mises type were recovered from the formulation,
including an enumeration of the possible sectors of crack tip plastic deformation in a
material with arbitrary Poisson’s ratio. The detailed assembly of sectors into an asymptotic
ficld for the growing plane strain tensile crack was given by Drugan er «l. (1982). Their
work contains an exact asymptotic analysis valid for isotropic materials with arbitrary
Poisson’s ratio and an approximate asymptotic analysis that gives details of the results
presented in the earlier study of Rice er af. (1980). The exuact asymptotic analysis identitied
a primary plastic zone containing three distinct sectors of deformation. a secondary plastic
zone along the crack surfaces, and an intervening sector of elastic deformation between the
primary and secondary plastic zones. Drugan (1986) has extended this work by presenting
a higher-order asymptotic analysis that clarities the radial dependence of the near-tip plastic
deformation field associated with the growing plane strain tensile crack.

Recent analyses have expanded the scope of the previous work to include growing
planc stress tensile cracks, growing plane stress shear cracks (mmode (), and growing cracks
in strain-hardening materiais. Achenbach and Dunayevsky (1984) have employed the
method of matched asymptotic expansions to obtain a complete solution for the normal
strain component in the plane of a propagating plane stress tensile crack. Ponte Castaneda
(1986) has given an asymptotic analysis for the growing plane stress shear crack, showing
results that are similar in form to the two carlier studies of growing cracks in planc strain
shear and anti-plane shear (Slepyan, 1974 Chataley and McClintock, 1971). Finally Ponte
Castaneda has presented two asymptotic analyses of crack growth in materials with strain-
hardening. The first work (Ponte Castaneda, 1987a) gives general asymptotic solutions for
steady crack growth in plane strain (modes T and 1), plane stress (modes Tand 1), and
anti-plane shear (mode T for a material characterized by J, flow theory with lincar strain-
hardening, The sccond work (Ponte Castatieda, 1987b) presents asymptotic solutions for
plane stress and plane strain steady tensile crack growth in a material characterized by J,
deformation theory,

Numerical methods have been used to study the complete clastic- plastic stress and
deformation ficlds associated with propagating tensile crucks. Sorenson (1979) and Dean
and Hutchinson (1980) have presented finite element analyses of plane strain crack growth
in i power-law hardening material. Sham (1983) has given a detailed finite element study
of transient plane strain tensile crack growth in an elastic -ideally plastic material. Nara-
stmhan ez af. (1987a,b) have presented finite element analyses of planc stress tensile crack
growth for both clastic-ideally plastic and strain-hardening materials. Other recent studies
have employed mucrostructural models for the material to relate stable crack growth to the
mechanism of microvoid growth and coalescence. Aravas and McMeceeking (1985) have
used large deformation finite clement analysts to study the growth of a cylindrical void
ahcad ot a blunting stationary crack. They employed a modified yield condition that reflects
the growth of small-scale voids and the reduced load-carrying capacity of the porous
material. Their results provide an estimate for the crack tip opening displacement required
for fracture initiation in porous material that contains a single large-scale void ncear the
crack tip. Needleman and Tvergaard (1987) have extended this work by considering the
effect of an uarray of large-scale voids near the crack tip. They employed a modified
constitutive relation that accounts tor viscoplatic material behavior in the porous solid. The
results of the finite element analysis arc used to calculate the crack tip opening displacement
required for fracture imtiation and the tearing modulus assoctated with the carly stages of
crack growth.

The fintte clement analysis of growing cracks requires an extremely fine mesh for the
calculation of accurate numerical results. In order to reduce computational effort, Denda
(1983a) has formulated a planar ship element for steady crack growth based upon the theory
of distocations. His work contains the basic complex potential function solution for planar
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slip in a plastically deforming rectangular element and its trailing wake. Although Denda’s
method is restricted to elastically incompressible, ideally plastic materials and requires the
solution of a nonlinear system of equations. he has shown that it yields accurate results to
the plane strain tensile crack growth problem on a rather coarse element mesh. It can also
be combined with other dislocation-based approaches to crack tip plasticity to study more
specialized problems. Recently. Denda (1986) has removed some of the restrictions on the
use of the planar slip element with a new procedure that makes use of the Green’s function
representation of inelastic deformation by linear combinations of force dipoles or couples.
This method has been shown by Denda and Lua (1986) to give good results for the steady
state. plane strain tensile crack growth problem. Wu and Hui (1987a) have employed the
fictitious body force method of Eshelby (1957) to develop a complex variable method for
two-dimensional internal stress problems. They have considered various applications of
their approach (Wu and Hui, 1987b). including problems of quasi-static. steady state crack
growth for anti-plane shear and plane strain tensile loading.

In the present work. the results of an investigation of the fracture process zone near
the tip of a steadily propagating plane strain tensile crack will be presented. The macroscopic
plastic deformation near the advancing crack tip is modeled using the planar slip element
method developed by Denda (1983a). The fracture process zone at the crack tip is repre-
sented as a continuous distribution of dislocations occupying the crack prolongation
plane immediately ahead of the crack tip. The objective of the study is to clarify the fracture
criterion tfor ductile stable crack growth proposed in the work of Rice and Sorenson (1978).
Rice e al. (1980) and Rice (1982). These authors suggest that the characteristic material
distance behind the advancing crack tip needed for the attainment of the critical crack
opening displacement is related to the size of the fracture process zone. The quantitative
analysis of the fracture process zone provided here will sharpen the existing fracture
criterion,

The geometry of the problem is illustrated in Fig. 1, which shows a semi-infinite crack
propagating steadily. The body containing the crack is ol infinmite extent in all directions,
and the Cartesian coordinate axes are chosen so that the x-axis coincides with the advancing
crack front. Tt is assumed that all transient effects subsequent to the initiation of crack
growth have decayed, and that the crack has been propagating steadily for an indefinitely
long period of time under the influence of i remote loading system that produces a constant
mode I stress intensity factor A at the crack tip. Macroscopice plastic deformation extends
over the planar region surrounding the crack tp and a fracture process zone occupics the
scgment of the wp-axis immediately ahead of the crack tp. Small-scale yiclding conditions
are assumed to prevail near the growing crack. The dislocation configurations used to
model the macroscopic plastic deformation and fracture process zone are invartant with
respect to the coordinate system moving with the crack tip.

In what follows, deseriptions of the planar slip element method and the fracture process
rzone model will be given. The method for combination of the two approaches through
application of the yield condition tor an clastically incompressible, ideully plastic material
will be tllustrated. Finally, the numerical solution for the problem will be discussed and the
results of the study presented.

X2

Fig. 1. Geometry of the steady tensile crack growth problem.
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THE PLANAR SLIP ELEMENT METHOD

Denda (1983a) has shown that the stresses and displacements associated with planar
slip over an isolated finite area can be calculated from the appropriate Muskhelishvili
complex potential functions. The rationale for this approach derives from the fact that slip
deformation can be represented as a continuous distribution of dislocation dipoles over
planar area. For the steady crack growth problem. consider a rectangular region R in the
upper half of the x x,-plane and its counterpart region R in the lower half-plane as
illustrated in Fig. 2. Both regions consist of an active element plus a trailing wake of
plastically deformed material. Employing a coordinate system that advances along with the
steadily propagating crack. the plastic shear strain rate can be expressed as

. s

Tp= i, (h
‘r Xy

where the dot denotes differentiation with respect to the monotonically increasing time
parameter ¢ = a (« is the crack length). Assuming that the quantity 7, is constant in the
active element of regions R and R, the spatial variation of plastic shear strain in the two
regions is

re N

) (£} {-,"p(:u*:) for & < ¢ < due )
’ FolSr—S1) for —x <<y,

This relation is used in the calculation of the complex potential functions for the inclastic
slip deformation in regions R and R. We shall refer to this pair of regions as a planar slip
clement. Due to the symmetry of mode [ deformation with respect to the x,-axis, the
analysis of stress and displacement can be confined to the upper half-plane x, > 0.

Let us employ the complex notation = = x, +ix,, wherei = (— 1) For the case where
the point = is outside the region R, the complex potential functions for the planar slip
clement are

()
—

D (z) = Dy (D) + (), {

where
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Fig. 2. Regions of deformation associated with the planar slip element.
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In cquations (4). (5) and (7)., 2 is the constant angle of slip in the regions R and R,
= 4in, (=1, 4) arce the locations of the corners of the active clement, and
D = p/[2rn(1 —v)} where pis the shear modulus and v is Poisson’s ratio. The superposed
bar denotes the complex conjugate of a quantity and in cquation (8), the prime denotes
differentiation with respect to . For the case where the point = lics within the region R, the
complex potential functions are

-

D(z) = DY)+ D5(2), &)
where
D(2) = D (2) +i 2 Dyp(2)(1+e™), (10)
and
x(2) = "™ )+ 15 ) (1)
where
M) = M (2) = r Dy, (2) sin 2. (12)

The stress components are refated to the complex potential functions through the cquations

Yoy +0a3.) =2 Re d(2), (13)

Hon—ay ) +io: = x(2), (t4)
where Re denotes the real part of a complex function. Details of the derivation of the

complex potential functions for the planar slip element are given in the work of Denda
(1983a).
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THE FRACTURE PROCESS ZONE

The continuum model for a growing plane strain tensile cruck in an elastic-ideally
plastic solid predicts a logarithmic plastic strain singularity at the crack tip (Rice, 1968).
Integration of the strain—displucement relations leads to a vanishing crack opening dis-
placement and an infinite crack surface slope at the crack tip. The nonblunted appearance
of the crack tip is a consequence of the inability of continuum plasticity theory to account
for the material failure at the tip of the advancing crack. The material failure can be
described by introducing a fracture process zone model in the region immediately ahead of
the cruck tip.

Weertman (1978) has suggested that in ductile materials under plane strain conditions,
the nucleation of microvoids ahead of the crack tip can lead to localized necking of the
material. Crack growth occurs when microvoids coalesce and join together with the existing
crack. Detailed studies of this mechanism during fracture initiation and the early stages of
crack growth have been provided by Aravas and McMeeking (1985) and Needleman and
Tvergaard (1987). The central feature of these studies is the use of large deformation finite
element analysis in conjunction with modified constitutive relations for the void-permeated
material ahead of the crack tip. Both investigations give detailed estimates of the crack tip
opening displacement required for fracture initiation. The latter study (Needleman and
Tvergaard. 1987) also gives an estimate of the tearing modulus associated with the initial
period of crack growth,

Rice and Sorenson (1978) have discussed the ditferences between the near-tip plastic
strain fields which characterize stationary and extending cracks in elastic adeally plastic
material. They note that the stationary crack is characterized by a strong | r type plastic
strain singularity and that the extending crack is characterized by a much weaker In (r) type
plastic strain singularity (r s the distance from the crack tip). In addition, they present a
general expression for the cruck opening displacement which applices for both cases. For
the stationary crack, this expression contains a parameter which can be accurately caleulated
only through u finite strain analysts. For the extending crack under constant load (which
corresponds to the steady crack growth problem considered in this study), the expression
redduces to a simpliticd form which allows for the crack opening displiacement to be estimated
from the results of conventional infinitesimal deformation analyses. This suggests that the
ctfect of finite strain in the steady crack growth problem is confined to a very small region
close to the cruck tip. For this reason, it scems plausible that a simplitied fructure process
rone model can be used to quantily the fracture criterion tor steady ductile crack growth.

The simplified fracture process zone model tor steady crack growth must provide good
estimates of the crack tip opening displacement and the fength of the fracture process zone
along the prolongation plane ahead of the cruck tip. These quantities can then be used to
calculute the critical crack tip opening angle assocuated with steady crack growth. Approxi-
mite models for the fracture process zone ahead of an extending crack have been used in
previous work., Wnuk (1974) has employed the strip-yiclding model of Bilby ¢t af. (1903)
and Dugdale (1960) (hereafter referred to as the BCS-Dugdale model) to tormulate his
tinal streteh eriterion for plane stress crack growth. In Wnuk’s model, yielding is contined
to the crack prolongation line, and it s assumed that the condition for continued crack
growth is the attainment of a critical increment of crack opening in a small segment of the
yiclded zone ahead of the crack tip. These quantities define a critical crack tip opening angle
for continued crack growth. Rice and Sorenson (1978) have noted the similarity between
Wnuk's final stretch concept and their own critical crack tip opening angle for continued
plane strain crack growth. In an analytical study of fatigue crack growth, Budiansky and
Hutchinson (1978) have employed a modified version of the BCS -Dugdale model that
accounts for cyclic loading and the residually stretched material appended to the crack
surfaces. This model successfuly predicts the fatigue crack closure phenomenon discovered
by Elber (1970) in an experimental study of fatigue crack growth. The Budiansky and
Hutchinson study indicates that fatigue crack closure occurs when material that is plastically
stretched in the strip-yielding zone falls behind the advancing crack tip and comes into
contact during the cyclic loading.
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The previous investigations of Wnuk (1974) and Budiansky and Hutchinson (1978)
establish the usefulness of the BCS-Dugdale model for the representation of ductile material
failure ahead of the crack tip. For this reason, the BCS-Dugdale model will be employed
in this study to represent the fracture process zone associated with a steadily propagating
plane strain tensile crack under constant loading. The fracture process zone ahead of
the advancing tensile crack is modeled as a continuous distribution of edge dislocations
with Burgers vectors parallel to the x;-axis. The complex potential functions for an edge
dislocation with Burgers vector b located at x, = x" are

i ub l ub 1
9:(2) = an(l—v)z—x 4dn(l—v) =" (" T4V (15)
Q/(5) = ub 1 ub 1 (16)

dn(l—=v) I=x' 4n(l—v) Z3E 24073

where the first term in the foregoing equations represents the self-stresses of the dislocation
and the second term represents the image stresses resulting from the condition of zero
normal traction along the crack surface. The stress components are related to the complex
potential functions through the equations

Yo +02) =2 Re ¢/(2). W)

Hon—0)=io), = Q)= (D) +(z -2, (3) = (-, (2). (18)

THE ELASTIC SINGULAR FIELD DUE TO EXTERNAL LOADING
The remote tensile stress acting on the infinite body containing the steadily propagating
crack gives rise to the mode [ singular stress field of lincar clastic fracture mechanices in the
region near the crack tip. The complex potential functions for the elastic singular field are

K

4 r:'m (:) = :2—-(5;{7;5],3 s ( l())
K

Q:em (5) = 24_2_—.;)_“"1 . (20)

where K is the mode [ stress intensity factor. The stress components for the clastic singular
ficld can be obtained by using the complex potential function of eqns (19) and (20) in eqns
(17) and (18). Introducing polar coordinates through the relation - = r e?, the stresses can
be expressed in the form

K K 0 .0 30
g, = (ir—z“;)_l-/-:f”(()) = —2;;51—:‘ Cos 2— (l —sin 5, s —2‘>, (2])
K 4 0 0 30
Gyy = (2—;,775[2_(0) aﬂ )T cos 3 (I +sin 3 sin 3—) (22)
0 0
o, s f12(0) = ———75 sin : cos = cos g (23)

2 2 2

2T Qan) Q2nrr)
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SUPERPOSITION OF RESULTS AND APPLICATION OF THE YIELD CONDITION

The stress components due to inelastic deformation in the planar slip element and
fracture process zone and the elastic singular stresses due to the remote tensile loading have
been obtained from complex potential functions appropriate for two-dimensional problems
in the theory of elasticity. Plastic deformation in a cracked body can be considered as an
interaction between the deformation field of dislocation arrays and the elastic field associ-
ated with the applied loading. The stresses, strains and displacements for the planar slip
element, the fracture process zone, and the elastic applied loading field can be superposed to
model the plastic deformation near a steadily growing plane strain tensile crack. Unknown
quantities associated with the planar slip elements and fracture process zone, as well as the
extent of the region of plastic deformation. can then be found through the application of a
yield condition.

Consider the region surrounding the crack in the upper half-plane x, > 0 to be divided
into N rectangular elements. Each element represents the active portion of the region R
shown in Fig. 2. By superposing the stresses due to (1) inelastic deformation in the v
regions R+ R associated with each rectangular element, (if) the continuous distribution of
dislocations in the fracture process zone, and (iii) the elastic singular field of the applied
loading. the stresses at all points in the plastically deforming body can be obtained. Let 1,
be the yield stress in shear for an ideally plastic material. Introducing the dimensionless
variables

1'(:: 0 1'«2) . . Iz f::v . Topt - i
s - - A Py R— “ —_ — - )
i= .50z, =0 Yo = . T= . G = . h="h, (24)
K- K- S P K- & Ty Ty
where the indices 2, ff = 1, 2, the stresses at any point £ = X 41X, can be expressed as
N
0.'1/1(5) = Z f’:i‘/t(f‘s,)+‘“;/:(f)+(i:/r(f)- (25)

1=

where a4, (2, Lf,) is the stress due to the inelastic deformation in the jth planar shp clement with
center at C‘, = f, +i4,. 83, (3) is the stress due to the continuous distribution of dislocations
in the fracture process zone, and o5,(3) is the stress due to the elastic singular field of the
applied loading. Using eqns (3) (14), the stresses from the planar slip clement can be
expressed as

- P “n PR l 7,4 C D . Iy
a8 (G.g ) —ah (G0 = (] — v)[x'(:.g,) cos 2x,+ B(2,(,) sin 2x,]7), (26)
po(s 7 I 3T col e Y2 Sy oain Yy |57 9
a0 (30) = 3] _v)[( (3,¢,) cos 2+ D(2,C,) sin 22,74 (27)
6% (3.5 +60 G0 = 7-7[(-";‘;)[1"(5.;',) cos 22+ Q(3.0) sin 23 )30, (28)

where 2, is the angle of slip in the jth clement and the dot now denotes differentiation with
respect to the dimensionless time 1. The functions A, B, C, D, P, Q are given in polar
coordinate form in the work of Denda (1983b). The stresses due to the continuous dis-
tributions in the fracture process zone are given by

T
e —— h ".' . ;:..1» '-_;‘ 2()
(1<) L (87 d (29)

U6 (5) =6}, (D) =

l e .
g1:(3) = IO J:) h(XVH (2. X7y dx', (30)
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J.' BV, (E %) de, Gl

a2 +60 (D] = Se(i=v) I

where A () is the dislocation density. and $* is the extent of the fracture process zone along
the positive %,-axis. The functions #,. H.. H, are obtained from eqns (15)0-(18). They are
given in polar coordinate form in the thesis of the author (Russell. 1987). Finally, the
stresses due to the applied loading are given in eqns (21)~(23), which can be expressed in
dimensionless form using eqn (24).

The yield condition used in the solution consists of two requirements : (i) the maximum
shear stress at the centerpoint =, of the kth active element is equal to the yield stress in shear,
7. and (ii) the direction of the maximum shear stress in the A th active element must coincide
with the direction x, of the maximum plastic shear strain rate. These requirements can be
expressed in terms of the dimensionless variables by the two equations

é[d::(fk)"d'n(fk )] sin 2% +6,,(3) cos 2x, = 1, (32)
E’[dzz(:‘k)“’éu(fk N cos 2x, —a,:(Z) sin 2% = 0. (33)

Denda (1983a) gives an equivalent form which is more convenient for computational
purposes

Ho 22 (Z)—d (GOl = sin 2. (34
a: (5 ) =cos 2x,. {35)

The requirement of the yickd condition for coincident directions of maximum shear stress
and maximum plastic shear rate implics that the material is elastically incompressible with
Poisson’s ratio v = 1°2. This can be scen by employing dimensioned variables, squaring
both sides of egns (34) and (35), and adding the result to obtain

Hon—a,) +ai, =15, (36)

Equation (36) is von Mises” yield condition for an clastically incompressible, ideally plastic
materiial.

The solution for the unknown dislocation density in the fracture process zone is
obtained by prescribing the normal stress 4, along the ¥,-axis ahead of the crack tip. For
this purpose it is appropriate to employ the result 6,, = 5.106, obtained from the asymptotic
analysis of the mode | plane strain growing crack given by Drugan e¢r af. (1982). The
prescribed stress requirement is consistent with the assumption that steady crack growth is
deformation-controlled and characterized by a constant critical value of the crack tip
opening angle. As noted by Rice ef «f. (1980), the critical crack tip opening angle criterion
makes no reference to the normal stress ahead of the crack tip, which is essentially equal
to the Prandt! field value for both stationary and growing cracks. Instead, it reflects the fact
that the strain and crack opening displacement are the only variable features of the near-
tip ficlds associated with plane strain cracks in elastic - plastic materials,

NUMERICAL SOLUTION PROCEDURE

A system of nonlincar equations governing the steady state tensile crack growth
problem can be obtained by substituting the stresses from egn (25) into eqns (34) and (35)
and employing the prescribed value 6,; = 4, in the fracture process zone. This procedure
gives a system of 2NV + 1 nonlincar equations that can be solved for the unknown quan-
tities /,’, 2, (f = 1.....N)associated with the planar slip elements and the dislocation density
(%) in the fracture process zone. The application of numerical methods to the solution of
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this system of equations requires discretization of the integrals involving the dislocation
density. For this purpose. the integration domain is divided into 3z equal intervals of length

X, = AN+ (- DAY forj=1..... 3n. (38)

An integration formula can then be obtained for each integral by representing the integrand
by a Lagrange interpolating polynomial of degree two and integrating the result over a
subdomain of three intervals. The definition of the Cauchy principal value integral is
employed for the case where the integrand possesses a singularity of Cauchy’s type. The
mntegrals mvolved in the yield condition can then be expressed as

. | S e 2.
Yar (G —dl Gl = Sl \-;)J‘ POSVH LG ¥y de = Y p 1Y (39)
- - 0 =1
fork =1,....N,
. L N T S
ay.(Z) = el 1) J” BXMZ. XY dY ,-Ln b 30
fork =1..... V.

{ . )
&31(‘\1,:%“ “)J BT (R0 X7+ H (%, 7))
-~ . 1]

i * ! !
= b v A S A
2n(l —v) ,( 5 }[e&-.{-' TR -J PRV

fork =1.....3n wiu.rc thg notation A(¥)) = , has been employed. Detailed expressions for
the quantities £}, I3, L"), are given in the thesis of the author (Russell, 1987).

The use of nqn\ (?9} 4]) enables us to write 2+ 3n nonlinear algebraic equations
for the unknown quantities 7. 2, (j=1...., N} and hj, {j=1,..., 3. The nonlincarity
can be expressed in a weaker form by making the substitutions

Wy, = 7 cos 2x,, (42)
Wy, = vl osin 2u,, (43)

forj=1,.... V. The resulting system of equations takes the form

2e{l—v) =

1 . R I 1
Y (( k- 5;)“ i+ [’H(!—l’)c‘(fh;&)“-53\}“-'“'-}- 5 (1 Z D( % Q )“‘
2 h In

e ;-!
L

o i ‘
F LA = = s a0 @)
=Ty

BN
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fork=1...., N,

1 oL s ] 1 |
mlgl"(:k-s/)“'l; In(l—v) & Y B o Wy + [m Bl - Ip]" *

j=1
ok

In
+ Z h,[,'(‘]' =

=1 ’ ‘,(.’ )I 270"}

Ull(ok _fl I(ok )] (45)
fork=1..... Nand

Z [B(%.$)+ 0 (8. {ivy,

4(-{'k~;)+13(-\:k-‘:—,)]';'|/+ ;;(-l:\_)
- j=1

uM,

"n(l

Z,;[l‘)=-

=1

(46)

T Qri)t

for k = 1.....3n. It is noted that the nonlinearity in eqns (44) and (45) is confined to one
term and that eqn (46) represents a set of lincar algebraic equations.

The system of eqns (44)-(46) is solved by an iterative scheme. In the first iteration. the
quantitics fi* = 1/5% are set equal to zero. After solving the resulting system of lincar
algebraic equations, the quantitics 7% and f* can be calculated from the relations

fe = Ol +id) " (47)
S =1/, (48)
fork=1,..., N. The positive root is taken in cqn (47) since the requirement of positive

plastic work rate in cach clement implies that ',f,f > (0. The quantitics f* ire now inserted
into egns (44) and (45) and the solution process continucs. The iterations proceed until the
quantitics | /2 =X /£ compulted from iterations i and i —1 are sufficiently small.
When a convergent solution to the system of egns (44) -(46) has been obtained, the angles
4 (k= 1,....N) of the maximum plastic shear strain rate can be calculated by using
eyns (42) and (43) in conjunction with the physical requircment that 0 € 2, < x for cach
plastically deforming clement in the upper half-plane ¥, > 0.

The extent of the region of active plastic deformation in the upper half-plane ¥, > 0
and the length x* of the fracture process zone along the positive X -axis are unknown at
the beginning of the calculations. The extent of the active plastic zone in the upper half-
plane is determined by covering a large portion of the crack tip region with a rectangular
mesh of elements and then activating N of these elements based upon an estimate of the
size and shape of this zone. After a solution to the system of eqns (44)-(46) has been
obtained. stresses are calculated at the center of cach clement in the mesh. Inactive elements
which do not satisfy the condition

H62G)=d GO +d1a(E) < (49)

are considered to be active clements in the next round of calculations. Active elements
which hinder the convergence of the solution of the system of eqns (44)-(46) by virtue of
extremely small plastic shear strain rates ¥ are considered to be inactive in the next round
of calculations. Usually two or three rounds of calculation are sufficient to determine the
active plastic zone corresponding to a given fracture process zone length ¥*.

The length of the fracture process zone £* is determined from the condition that the
stress singularity associated with the elastic applied loading ficld be cancelled by the plastic
deformation in the planar slip elements and fracture process zone. Denda (1983a) has
shown that all of the stress components due to the inelastic deformation in the planar ship
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element possess a term containing the inverse square root singularity that characterizes the
elastic field of the applied loading. From each of these terms a common factor can be
extracted which gives a measure of the elastic singularity cancellation associated with the
planar slip element. Physically. these singularity-cancelling parameters are associated with
the disfocation image stress field of each element. A similar singularity-cancelling parameter
can be extracted from the image stress field associated with the continuous distribution of
edge dislocations in the fracture process zone, Adding the singularity-cancelling purameters
from the .V planar slip elements and fracture process zone with the associated parameter
from the elastic singular field gives the quantity

l ] \. .. J 1
e e el Y = 1)ymd51 T [cos (Pl ) cos 23, +sin (¢, /2) sin 22,1
2 21(); 2 2?!([ ——&') }’,Z‘ ip Z} i AR [ (bm 7 ( bm! ) ;};

l "

. 1 . 1 ~ 1
- LAY | 9By 3 e +6By 9w | (50
4r(l —~v) kg:l R [ AR : R ; 0w '\“:Lh} G0

Aé =

where 5., ¢}, {m = 1,....4) are the polar coordinates of the four corners of the active
portion of planar slip element j. The final summation in eqn (30) is obtained by using the
numerical intcgration scheme employed previously to discretize integrals involving the
dislocation density. [t is convenient to normalize Aé by defining A¢* = 2(2r)' *A¢. The size
of the fracture process zone £* corresponding to a given mesh ol planar slip clements is
adjusted until Aé* = 0.

The crack tip opening displacement, 8, associated with the fracture process zone
ahcad of the propagating crack tip is obtained through the relation

dy = j h(x’) dx'. (5N

}

Introducing the dimensionless variable dy = 8,/[A 7/ uty] and the numerical integration
scheme discussed previously yields the formula

So=Y MXOhy o +6hy +96y) (52)
k=t
for numericul evaluation of the crack tip opening displucement.

NUMERICAL RESULTS

The numerical solution procedure deseribed in the previous section has been
implemented to study the influence of the fracture process zone on the steady state, plane
strain tensile crack growth problem. The region of active plastic deformation near the
advancing crack tip was determined by using a series of increasingly refined planar slip
element meshes to identify the region in the upper halt-plane where the yield condition is
satisfied. The length of the fracture process zone was determined through the requirement
that the stress singularity associated with the clastic applicd loading ficld must be cancelled
by the plastic deformation in the planar slip elements and fracturc process zonc. For this
purpose. the two elements nearest the crack tip were subdivided several times in order to
simulate the intense yielding that occurs in this region.

The solution corresponding to the finest element mesh employed in the calculation is
shown in Fig. 3. The planar slip clement mesh consists of only 106 clements, as compared
to the 1660 clements used in Sorenson’s (1979) finite element analysis of plane strain tensile
crack growth. As noted by Denda (1983b). the planar slip element method requires a less
claborate clement mesh because the influence of the active elements on the stresses, strains,
and displacements is calculated directly through the use of potential functions. In contrast,
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Fig. 3. Mosh and numerical solution for the planar slip clements when the fracture process zone is
included in the model.

the finite clement method requires a much larger mesh because the influence of remote
clements on the deformation at a given point must be propagated through intermediate
clements. These intermediate clements must be highly refined to prevent loss of numerical
accuracy. For this reason it is expected that the planar ship clement method gives results
that arc competitive in accuracy with finite element method results obtained on much more
detailed meshes.

In the 106 clement mesh shown in Fig. 3, 40 clements were determined to satisfy the
yickd condition. Thirty-three mesh points were employed in the fracture process zone, giving
a total of 113 equations in 113 unknowns to be solved during cach iteration, Fifty iterations
were suflicient to obtain accurate solution to the system of eyns (44)-(46). The magnitude
of the plastic shear strain rate 7, and the direction of slip 2 are represented as scaled line
segments emanating from the centers of the active elements of the mesh. The solution of
the elements near the crack tip is not shown due to the large magnitude of the plastic shear
strain rate in this region.

Figure 3 reveals four distinet sectors of deformation in the region near the advancing
crack up. In terms of the polur angle ¢ meusured from the positive ¥,-axis, they are

(i) a plastically deforming sector located in the region 0 < 0 < 45 where the slip
angle is nearly constant at 2 457,
(i1} a plastically deforming centered-fun sector located in the region 45 € # < 135
where the slip angle x x 0 for clements near the crack tip,
(1ii) an elastically deforming sector located in the region 135 < 0 < 1617,
(iv) a secondary plastically deforming sector located in the region 1617 < 0 < 1807 in
which the ship angle is nearly constant at 2 = 135 .

The length of the fracture process zone corresponding to 97.3% singularity cancellation
wis determined to be £* = 0.0007, which is less than the horizontal extent of the smallest
clement adjacent to the crack tip. Note that the spatial coordinates in Fig. 3 have been
normalized by the quantity K?/ti. where 1, is the yield stress in shear. In finite element
studics the spatial coordinates are often normalized by K/}, where g, is the yield stress
in uniaxial tension. Comparisons between different sets of results can be obtained by taking
Gy = {3)' :tn-

The solution for the same clement mesh in the absence of the fracture process zone is
shown in Fig. 4. In contrast to the results shown in Fig. 3, only 75.5% singularity can-
cellation is obtained by the planar slip clements acting alone. The configuration of active

33 13:10-
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Fig. 4. Mesh and numerical solution for the planar slip clements when the fracture process zong is
omitted from the model.

clements and the features of the solution for the clements outside the near-tip region are
similar for the two cases, The global clastic plastic solution of Fig. 4 also agrees closcly
with the planar slip clement results obtained by Denda (19834). The influence of the fracture
process zong is apparent from an examimition of the solution in the near-tip clements not
shown in Figs 3 and 4. For this purpose, numerical resulls for the near-tip clements are

iy

given in Table 1. The quantities 707, x' refer to the slip clement solutions when the fracture
process zone is included and the quantities 717, 27 refer to the slip element solutions when
the fracture process zone is omitted. The quantity ¢ is the polar angle at the center of the
clement and z, is the slip angle predicted at the center of the clement by the asymptotic
analysis of Drugan e af. (1982). Clements with centerpoints lying in the clastically deforming
sector are indicated by a blank in the appropriate slip angle entry in the table. A diagram
showing the location of the numbered clements is given in Fig. 5.

Table [ Numerical results for near-tip clements

8 Z( A % 21 1,
Element {degrees) AR o {degrees) {degrees) {degrees)
f 1654 ¢ 1] — 135.0
2 165.1 0 i] - 135.0
3 1665 4] 0 — - 135.0
4 i44.2 JO08.0 53273 11006 96,64 —_
3 IB.66 et o REIER 37.58 4944 434
6 1493 1137.0 8612 49.50 48,32 43.0
7 [5.64 J01.1 34997 4994 50.45 45.0
8 14.93 165.3 I88.7 46,05 46,99 45.0
9 {423 23726 22018 120.5 1265 —
i) i3 0.9 1597.5 4.6 86,9 —
i 6668 R YK 24695 710 [ 6,68
i2 37.72 11808 7648 5496 5474 450
13 418 678.2 5849 1270 1332 —
4 1130 7.8 946.0 1132 1003 -
15 67.04 1677.3 1$11.3 63.52 62.27 67.04
16 IR 19 247 2545 St §4.52 45,0
17 1406 YA 2353 126.2 130.2 -—
i8 128 t31.2 296.9 108.2 [TEA —
19 67.21 6451 6079 6160 6248 6721

20 3843 (6.2 {463 4X85 .56 458
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Fig. 5. Diagram of ncar-tip clements.

Examination of Table 1 reveals that the greatest differences in elemental strain rate
magnitude for the two numerical soluttons are found in clements 4, 5, 10, 11 and 14. Of these
five clements, elements 4, 10 and 14 are also characterized by an appreciable discrepancy in
the two numerically calculated slip angles. These differences arise from the incomplete
clastic singularity cancellation associated with the planar slip elements acting alone. Tn the
solution obtained with the fracture process zone, it is noted that the plastic shear strain
rates 34" in clements 10 and 14 are rather small, and that the slip angles 2" for these
clements are 104.6° and 113.2°, respectively. These results, along with the result that
2" = 110.06" in clement 4, suggest some curvature in the boundary between the centered-
fan plastic sector and the elastic sector behind the crack tip. This boundary is located at
0 = 135 for the far field elements shown in Fig. 3 and curves toward the 0 = 110 direction
for the elements very close to the crack tip. This curvature is consistent with the asymptotic
analysis of Drugun er af. (1982), which predicts that the boundary between the centered-
fun sector and the elastic sectoris at 0 = 112.1°.

Denda (1983a) has found that as the near-tip element mesh s refined toward zero
element size, the planar slip elements are capable of cancelling the entire elastic singularity
associated with the applied loading. In this limit the results for the planar slip elements
acting alone will converge toward the results of the asymptotic analysis bused upon the
infinitesimal deformation assumption. In particular, the crack tip will possess the zero
crack tip opening displaccment and infinite crack surface slope that are indicative of
logarithmically singular plastic strains. In this same limit, the results for the planar slip
clement solution with the fracture process zone model will differ slightly from the asymp-
totic solution in the near-tip elements. A small fracture process zone will remain ahead of
the crack tip, and a discrete value of the crack tip opening displacement will be obtained.
When viewed in this way, the fracture process zone model is an approximate method of
accounting for the presence of farge but finite strains in the material ahcad of the crack tip.
The determination of the true fracture process zone size and crack tip opening angle
associated with complete refinement of the elements adjacent to the crack tip is discussed
in the next section.

The slip lines and elastic-plastic boundary constructed from the numerical solution
that includes the fracture process zone are shown in Fig. 6. The plastic zone is composed
of two lobe-shaped regions containing the primary plastic sectors (i) and (ii) discussed
previously and a region along the crack surface containing the secondary plastic sector (iv)
discussed previously. The plastic region ahead of the crack tip has its maximum extent
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Fig. 6. Slip lines and clastic-plastic boundary when the {racture process zone is included in the
model.

along the ray 1 = 74" and possesses centered-fan type slip lines that cunve toward the
positive ¥, direction. The curvature of the slip lines in the plastic region ahead of the crack
tip has been predicted by Rice (1968) in a discussion of the stationary tensile crack. The
higher-order asymptotic analysis of Drugan (1986) predicts a similar type of curvature for
the slip line that forms the border between the plastically deforming sectors (i) and (i)

The lobe-shaped region of plastic deformuation behind the erack tip has its maximum
extent along the ray 0 = 132 and possesses centered-fan type slip lines that curve toward
the X, dircction. This sccond lobe of plastic deformation is not present in finite clement
results for plane strain crack growth, ¢e.g. Sorenson (1979) and Sham (1983), but it has been
observed in previous work by Denda (19832) using the dislocation-based planar slip element
method. It has also been observed in recent work by Denda and Lua (1986), who studied
steady state plune strain crack growth using a numerical method that is based upon the
Green's function representation of inclastic deformation by a continuous distribution of
force dipoles or couples. One possible reason for the discrepancy in the results obtained
with the finite clement method and those obtained with the Green’s function methods is
the procedures that are used to model crack growth, Most of the detailed finite element
studies use a Lagrangian representation of crack growth. In this approach the coordinate
system remains fixed and the crack propagates from node to node in the element mesh. In
contrast, the Green's function methods (based upon cither continuous distributions of
dislocations or continuous distributions of force dipoles) use an Eulerian representation of
crack growth. In the Eulerian approach, the coordinate system moves with the extending
crack and time rates are calculated using the material derivative. The Lagrangian approach
is suttable for studics of transient crack growth following fracture initiation, while the
Eulerian approach is more appropriate for studies of steady cruck growth. In this regard,
a highly detailed Eulerian finite element study of steady crack growth would be uscful for
clarifying the differences between the finite element results and the planar slip clement
results in the plane strain crack growth problem. The methodology for such a work has
been developed by Dean and Hutchinson (1980), and the results would be a valuable
counterpirt to Sham’s {1983) detailed Lagrangian finite element results {or transient planc
strain crack growth.

Finally, Fig. 6 shows that a sccondary plastic zonc comprising the plastically deforming
sector (iv) mentioned carlicr extends along the surface of the crack. As noted by Drugan
et al. (1982). the existence of this region is necessary because material elements passing
through the centered-fan sector very close to the crack tip acquire very large plastic strains
which necessitate further yielding to aveid unbounded residual stress. The caleulations
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presented here indicate that the yield condition is barely satisfied in the secondary plastic
zone and that the plastic shear strain rate in the active planar slip elements of this region
are rather small. For this reason, the secondary plastic zone has been terminated at
X, = —0.05. It is expected that the influence on the near-tip elements and fracture process
zone of any marginally active elements that may have been deleted is negligible.

A CRITERION FOR DUCTILE STABLE CRACK GROWTH

The computational results for the steadily propagating plane strain tensile crack with
fracture process zone can be used to clarify the fracture criterion proposed by Rice and
Sorenson (1978). These authors suggest that continuing ductile stable crack propagation is
characterized by the attainment of a critical crack opening displacement at a characteristic
material distance behind the advancing crack tip. The characteristic material distance in
this crack growth criterion can be identified with the size of the fracture process zone.

The calculations for the planar slip element mesh with fracture process zone indicate
that the elements adjacent to the crack tip play an increasingly dominant role in the elastic
singularity cancellation when they are refined to smaller and smaller sizes. This trend is
manifested by the fact that the computed fracture process zone size becomes smaller and
smaller with increasingly refined near-tip element meshes. The true fracture process zone
size will be the value that is obtained in the limiting case of an infinitely retined mesh of
elements adjacent to the crack tip.

The relationship between fracture process zone size and crack tip efement area is
illustrated in Fig. 7. The plot has been constructed using computed fracture process zone
size results from four successive refinements of the elements adjacent to the crack tip. Fitting
a Lagrange interpolating polynomial to the data points and extrapolating to zero crack tip
clement area leads to an estimate of

.2

K
X* = 0.000601 ", (53)

Tg

for the true size of the fracture process zone. This confirms the prediction of Rice and
Sorenson (1978) that the size of the fracture process zone under conditions of small-scale
yiclding and plane strain is exceedingly small. The result of equation (53) can be contrasted
with Dugdale’s strip-yiclding zone size of x* = (r/24)(K*/t}) for conditions of small-scale
yiclding and plane stress,

The fracture criterion given by Rice and Sorenson (1978) can be stated in the form

(5() 6"
— = — 4
x* (.Y‘)cﬂ( ) (5 )
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Fig. 7. Determination of true fracture process zone size.
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which implies that the ratio of the crack tip opening displacement J, to the fracture process
zone size x™* attains a constant critical value during crack propagation. This critical value
depends only on material properties. Equation (54) can also be interpreted as a statement
that ductile crack growth is characterized by an invariant crack tip opening angle. For this
reason. the relationship is often referred to as the critical crack tip opening angle criterion.

In the model of the steadily propagating plane strain tensile crack developed in this
work. J, is the crack tip opening displacement calculated from egn (52) and x* is the
computed fracture process zone size. Using the same four element meshes employed in the
estimate of the true fracture process zone size, the ratio d,, v* was found to be nearly
tnvariant with respect to near-tip element mesh refinement. The constant value of Jy/x*
during mesh refinement establishes the accuracy of the crack tip opening angle result
obtained in this paper. Taking the mean value from the four element meshes and using
dimensioned variables. this result can be expressed as

04 Ty
i 13.316

= (55)
where Young's modulus £ = 2u(t +v) and Poisson’s ratio v = |-2. The maximum deviation
from this result amongst the four clement meshes considered is less than 6%.

Rice and Sorenson (1978) have interpreted the data of Clark er af, (1978) in terms of
the critical cruck tip opening angle criterton, The results were obtained from crack growth
tests in small fully plastic bend specimens of pressure vessel steels. For the entire group of
materials tested, valdes ranging from 3,/ x* = 9891,/ E) to dy/x* = 534.0(1y/ £) were
observed. The numerically caleulated result of egn (55) falls into the lower end of this range.
Although the test results of Clark ez af. (1978) are representative of the inttial stage of crack
growth under large-scale yielding conditions, this agreement indicates that the fracture
process zone model deseribed in this paper gives physically reasonable values of the crack
tip opening angle.

CONCLUSIONS

The numerical study of the fracture process zone near the tp of a steadily propagating
plane strain tensile crack suggests the following conclusions.

(1) The influcnce of the fracture process zone is confined to the deformation ficld close
to the crack tip. Inside this region, the fracture process zone removes the crack tip plastic
strain singularity which is present in models that do not account for the failure of the
material at the crack tip. Qutside this region, the macroscopic plastic zone possesses features
revealed by carlier investigations of planc strain tensile crack growth.,

(2) The size of the fructure process zone ahead of the propagating crack decreases with
refinement of the near-tip element mesh. A small but appreciable fracture process zone
remains when the arca of the elements adjacent to the crack ip is extrapolated to zero. The
size of the fracture process zone for a moving crack with & macroscopic plastic zone in the
vicinity of the crack tip is two orders of magnitude smaller than the classical Dugdale
fracture process zone size based on the elastic deformation of the crack.

(3) The numenical results for erack tip opening displacement and fracture process zone
size can be employed to obtain an accurate estimate of the critical crack tip opening angle
associated with ductile stable crack growth. The numerically calculated crack tip opening
angle is found to be physically reasonable when compared with the results of crack growth
tests in pressure vessel steels.
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