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Abstraet-This paper presents a model for the fracture pwcess wnc ne,lr the tip of a steadily
propagating plane strain tensile crack. The material is assumed to t>e elastic-ideally plastic and
completely incompressible. The m,lCroscopic plastic defl'rmation near the advancing crack tip is
modeled by a slip element approach in which dislocations are cl1ntinUl'us!y distributed over a planar
regil,". The fracture prOCl'SS lOne is ml'deled by a continuous distribuli,'n of dislocations collinear
with the advancing crack tip. The results of the study re\eal the intluence of the fracture pwcess
wne on the slip line pallern within the crack tip plastic wne and on the elastic-plastic b"lll1dary.
The fracture pwcess lOne model is also shown to give an ,Kcurate and physically reasonable estimate
of the crack tip ,'pening angle aSSllcialed with continued dlll"tile stable crack growlh.

I:"TRODUCTIO,",

In rel.:ent years. the e1astil.:plastil.: stress and deformation fields ncar the tip of a quasi­
statil.:ally propagating tensile I.:ral.:k have oeen the subjel.:t of widespread theoretil.:al attention.
The motivation for this interest lies in the ooservation. e.g. Clark c( ClI. (197X). that spel.:imens
of dtKtile metall.:an exhihit extensive stahle I.:r'Kk growth prior to failure. The dcvelopmcnt
of engineering analysis mcthods for l1awed structures requires a sound foundation h,lsed
upon a realistil.: fral.:ture I.:riterion for I.:ontinued dUl.:tile I.:ral.:k growth.

Due to the mathematil.:al wmplexity of the lield equations governing the cral.:k tip
deformation proccsses. the most intense research clrorts have focused on the asymptotil.:
analysis of growing cracks under wnditions of small-scale yielding. These studies. which
arc rigorously valid at vanishingly small distances from the crack tip. employ slip line
metlll)ds similar to those used oy Rice (11)67) in the study of plastic deformation ncar a
stationary crack. In one of the !irst of such works. Chitaley and McClintock (1971) obtained
solutions for steady cral.:k growth in anti-plane shear (mode III). They diswvered the
presenl.:e of both a primary plastil.: lOne ahead of the propagating cral.:k and a secondary
plastic zone along the crack surfaces. Their study also identified the logarithmil.: strain
singularity found by Rice ( I96X) in a preliminary inVt:stigation of steady state tensile crack
growth (mode I). Slepyan (llJ74) reported similar findings in a study of plane strain shear
crack growth (mode II) for a material obeying the Tresca yield condition. Rice and Sorenson
(I97X) perfonm:d an asymptotic analysis of a propagating tensile crack valid for general
steady or unsteady growth regimes. Their analysis employed an assemhly ofcrack tip plastic
deformation sectors similar to the Prandtl slip line lield associated with a stationary tensile
crack. A logarithmic crack tip strain singularity was identilied and a fracture criterion based
upon the attainment of a critical crack opening displacement at a characteristic material
distance behind the crack tip was proposed. Rice e( al. (llJXO) later noted that the Prandtl
slip line configuration contained a velocity discontinuity corresponding to negative plastic
work. rendering it inappropriate as ,Ill asymptotic field for the growing crack. They proposed
a modified asymptotic field containing a sector or clastic deformation that intervenes
hetween the primary plastic zone ahead of the crack tip and the second,lry plastic zone
along the crack surf~lces. An asymptotic analysis was then given for a material satisfying
von Mises' yield condition under the assumption of elastic incompressibility at vanishingly
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small distances from the crack tip. The fracture criterion proposed in the earlier work of
Rice and Son:nson (197g) was again found to he suitable for the growing tensile crack.

Rice ( 19S2) generalized the results of previous asymptotic analyses for growing tensile
and anti-plane shear cracks (modes I and III). He presented a formulation valid for
anisotropic materials with arbitrary yield condition and associated flow rule. Detailed
results for isotropic materials of the H uber-Mises type were recovered from the formulation.
including an enumeration of the possible sectors of crack tip plastic deformation in a
material with arbitrary Poisson's ratio. The detailed assembly of sectors into an asymptotic
field for the growing plane strain tensile crack was given by Drugan et al. (1982). Their
work contains an exact asymptotic analysis valid for isotropic materials with arbitrary
Poisson's ratio and an approximate asymptotic analysis that gives details of the results
presented in the earlier study of Rice ct (//. ( 1980). The exact asymptotic analysis identified
a primary plastic zone containing three distinct sectors of deformation. a secondary plastic
zone along the crack surfaces. and an intervening sector of elastic deformation between the
primary and secondary plastic zones. Drugan (1986) has extended this work by presenting
a higher-order asymptotic analysis that clarities the radial dependence of the near-tip plastic
deformation field associated with the growing plane strain tensile crack.

Recent analyses have expanded the scope of the previous work to include growing
plane stress tensile cracks. growing plane stress shear cracks (mode II). and growing cracks
in strain-hardening materials. Achenbach and Dunayevsky (19X4) have employed the
method of matched asymptotic expansions to obtain a complete solution for the normal
strain component in lhe plane ofa propagating plane stress tensile crack. Ponte Castaricda
(19X(1) has givcn an asymptotic analysis for the growing plane stress shear crack. showing
results that arc similar in form to the two earlier studies of growing cracks in plane strain
shear allli anti-plane shear (Slepyan. 1974; Chitaley and McClintock. 1971). Finally Ponte
('astalicda has presented two asymptotic analyses of crack growth in materials with strain­
hardening. The first work (Ponte Castarieda. 19X7a) gives general asymptotic solutions for
stcady crack gwwth in plane strain (modes I and II), plane stress (modcs I and II). and
anti-plane shear (mode III) for a material characteri/ed by J ~ !low theory with linear strain­
hardening. The second work (Ponte Castarieda. 19X7b) presents asymptotic solutions for
plane stress and plane strain steady tensile crack gmwth in a lIlateri~d characteril.ed by J~

defllrlllation theory.
Numerical methods have been used to study the complete elastic-plastic stress and

dd'ormation lields associated with propagating tensile cracks. Son:nson (197lJ) and Dean
and Hutchinson ( 19XO) ha ve presented !inite clement analyses of plane strain crack growth
in a power-law hardening material. Sham (llJX3) has given a detailed linite clement study
of transient plane strain tensile crack growth in an clastic -ideally plastic material. Nara­
simhan 1'( al. (19X7a.h) have presented finite clement analyses of plane stress tensile crack
growth for both c1astie- ideally plastic and strain-hardening materials. Other recent studies
have employed l1Iicrostructuralmodcls for the material to relate stable crack growth to the
mechanism of microvoid growth and coalescence. Aravas and McMeeking (llJg5) have
used large deformation finite clement analysis to study the growth or a cylindrical void
ahead or a blunting stationa ry crack. They employed a modi lied yield condition that renects
thc growth of small-scale voids and the reduced load-carrying capacity of the porous
material. Their results provide an estimate ror the crack tip opening displacement re4uired
for rracture initiation in porous material that contains a single large-scale void ncar the
crack tip. Needleman and Tvergaard (19X7) have extended this work by considering the
efli.:ct of an array or large-scale mids ncar the crack tip. They employed a modified
constitutive relation that accounts for viscoplatic material behavior in the porous solid. The
results or the finite clement analysis arc used to calculate the crack tip opening displacement
required ror rracture initiation and the tearing modulus associated with the early stages or
crack growth.

The finite dement analysis of growing cracks requires an extremely tine mesh for the
calculation or accurate numerical results. In order to reduce computational effort. Deneb
(llJX3a) has rormulated a planar slip element for steady crack growth based upon the theory
or dislocations. His work contains the basic comple.\ potential runction solution for planar
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slip in a plastically de:fonning rectangular element and its trailing wake. Although Denda's
method is restricted to elastically incompressible, ideally plastic materials and requires the
solution of a nonlinear system of equations. he has shown that it yields accurate results to
the: plane strain tensile: crack growth proble:m on a rather coarse element mesh. It can also
be combined with othe:r dislocation-based approaches to crack tip plasticity to study more
specialized problems. Recently. Denda (1986) has removed some of the restrictions on the
use of the planar slip ele:ment with a new procedure that makes use of the Green's function
representation of inelastic deformation by linear combinations of force dipoles or couples.
This method has been shown by Denda and Lua (1986) to give good results for the steady
state. plane strain tensile: crack growth problem. Wu and Hui (1987a) have: employed the
fictitious body force me:thod of Eshelby (1957) to develop a complex variable method for
two-dimensional internal stress problems. They have considered various applications of
their approach (Wu and Hui. 1987b). including problems of quasi-static. steady state crack
growth for anti-plane shear and plane strain tcnsile loading.

In the prescnt work. thc rcsults of an investigation of the fracture process zone near
the tip ofa steadily propagating planc strain tcnsile crack will be presented. The macroscopic
plastic deformation ncar the advancing crack tip is modeled using the planar slip element
method developed by Denda (1983a). The fracture process zone at the crack tip is repre­
sented as a continuous distrinution of dislocations oL"cupying the crack prolongation
plane immediately ahead of the crack tip. The objective of the study is to clarify the fracture
criterion for ductile stanle L"rack growth proposed in the work of RiL"e and Sorenson (197!:i).
Rice c( a/. (19XO) and Rice (19X2). These authors suggest that the characteristic material
distance behind the advalKing L"rack tip needed for the allainment of the critical crack
opening displacement is related to the sile of the fracture process zone. The 4uantitative
analysis of the fracture process lOne provided here will sharpen the existing fracture
cri terion.

The geometry of the problem is illustrated in Fig. I, which shows a semi-in/inite crack
propagating steadily. The body containing the crack is of infinite extent in all directions,
and the Cartesian L"oordinate axes arc dlllsen so that the x ,-axis coincides with the advancing
crack front. It is assumed that all transient ellccts sunsequent to the initiation of crack
growth have deL"aycd, and that thc craL"k has neen propagaling steadily for an indclinitely
long period of time under the inl1ucncc of a remote loading system that produces a constant
Illode I stress intensity factor 1\ at the crack tip. Macroscopic plastic deformation eXll:nds
over the planar n:gion surrounding thc craL"k tip and a fracture process lone occupies the
segment of thc XI-axis immediately ahead of the cr,lck tip. Small-sL"ale yielding conditions
arc assumed to prevail ncar the growing crack. The dislocation configurations used to
model the n1aL"roscopic plastic deformation and fraL"ture proccss Lonc an: invariant with
respeL"t to thc coordinate system moving with the crack tip.

In what follows, dcscriptions of the planar slip e1cmcnt method and thc fracture process
lOne modd ..... ill be given. Thc method for combination of the two approaches through
appliL"'ltion of the yidd condition for an dastically inL"ompressible. ideally plastic material
will be illustrated. Fin,"ly. the numeriL"al solution for the problem will be discussed and the
results of the study prcscnted.

==============::J.------__ XI

Fig. 1. Geom<:lry or the steady tensile crack growth prohlem.
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THE PLA~AR SLIP ELEMENT METHOD

Denda (\ 983a) has shown that the stresses and displacements associated with planar
slip over an isolated finite area can be calculated from the appropriate Muskhelishvili
complex potential functions. The rationale for this approach derives from the fact that slip
deformation can be represented as a continuous distribution of dislocation dipoles over a
planar area. For the steady crack growth problem. consida a rectangular region R in the
upper half of the x Ix:-plane and its counterpart region it in the lower half-plane as
illustrated in Fig. 2. Both regions consist of an active element plus a trailing wake of
plastically deformed material. Employing a coordinate system that advances along with the
steadily propagating crack. the plastic shear strain rate can be expressed as

Ir ( I)

where the dot denotes differentiation with respect to the monotonically increasing time
parameter I = a (a is the crack length). Assuming that the quantity ';r is constant in the
active element of regions Rand R. the spatial variation of plastic shear strain in the two
regions is

for ~L ~ ~ ~ ~R'

for - £ < ~ < ~l.'

This relation is used in the calculation of the complex potential functions for thc inelastic
slip deformation in regions Rand R. We shall refer to this pair of regions as a planar slip
clement. Due to the symmetry of mode I deformation with respcct to the x I-axis. the
analysis of stress and displacement can bc confined to the uppcr half-plane x ~ > O.

Let us employ the complex notation =.= .\" 1+ ix~. where i .= ( - I) I ~. For the case where
the point = is outside the region R. the complex potential functions for the planar slip
element arc

(3)

where

(1)'("(=) =!D el"~r L (-I)"'(=-(",)/II(=-~",)
",'" I
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Fig. 2. R~gions of d~rormationasso~iatcd with th~ planar slip ~lcm<:t11.
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and

where

x't"(;:) = -!D e~"i;r L (-l)m[(;:-(",)-(:-C;.)j/n(:-(m)
m= I

(6)

I . ~

- 1 D e· ~"i;r L (-I )'''[(:-C;.)-(:-(m)j/n(:-C;,,). (7)
- m ..... 1

In equations (·H. (5) and (7).:x is the constant angle of slip in the regions R and It
(m = ~m+ ifl", (til = 1. .... 4) arc the locations of the corners of the active element. and
/) = Jlj[2rr( 1- 1')1 where JI is the shear modulus and I' is Poisson's ratio. The superposed
hal' denotes the complex conjugate of a quantity and in equation (X). the prime denotes
dilrerentiation with respect to :. For the case where the point: lies within the region R. the
complex potential functions arc

(9)

where

and

where

Xl:) = X\,'II'(:)+;(;(:).

( 10)

( II )

( 12)

The stress components arc related to the complex potential functions through the equations

( 13)

( 14)

where Re denotes the real part of a complex function. Details of the derivation of the
complex potential functions for the planar slip element are given in the work of Denda
( 1983a).
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THE FRACTURE PROCESS ZO~E

The continuum model for a growing plane strain tensile crack in an elastic-ideally
plastic solid predicts a logarithmic plastic strain singularity at the crack tip (Rice. 19681­
Integration of the strain--displacement relations leads to a vanishing crack opening dis­
placement and an infinite crack surface slope at the crack tip. The non blunted appearance
of the crack tip is a consequence of the inability of continuum plasticity theory to account
for the material failure at the tip of the advancing crack. The material t;lilure can be
described by introducing a fracture process zone modd in the region immediately ahead of
the crack tip.

Weertman ( 1978) has suggested that in ductile materials under plane strain conditions.
the nucleation of microvoids ahead of the crack tip can lead to localized necking of the
material. Crack growth occurs when microvoids coalesce and join together with the existing
crack. Detailed studies of this mechanism during fracture initiation and the early stages of
crack growth have been provided by Aravas and Mcl\keking (1985) and Needleman and
Tvergaard ( 1987). The central feature of these studies is the usc of large deformation finite
clement analysis in conjunction with modified constitutive relations for the void-permeated
material ahead of the crack tip. Both investigations give detailed estimates of the crack tip
opening displacement required for fracture initiation. The latter study (Needleman and
Tvergaard. 1987) also gives an estimate of the tearing modulus associated with the initial
period of crack growth.

Rice and Sorenson (1978) have discussed the ditli:renccs netween the ncar-tip plastic
strain lields which charactcrizc stationary and extending cracks in clastic ideally plastic
material. They note that thc stationary crack is characterized by a strong I r type plastic
strain singularity and that the extending crack is charactcrizcd by a much weaker In (r) typc
plastic strain singularity (r is the distancc from thc crack tip). In addition. they present a
general expression for the crack opening displaccmcnt whidl applies for both cases. For
the stati(lnary cr,lck, this expression contains a parameter which can be accurately calculated
only through a linite strain analysis. For the extending crack unda constant load (which
corresponds to the steady crack growth problem considercd in this study), the expression
reduces to a simplified form which allmvs for the crack opening displacement to be estimated
from the results of conventional infinitesimal deformation analyses. This suggests th;lt the
clrecl of finite strain in the steady crack growth problem is confined to a very small region
close to the crack tip. For this reason, it seems plausible that a simplified fractun: process
zOlle model can be used to quantify the fracture criterion for steady ductile crack growth.

Thc simplified fractun: process lOne model for steady crack growth must providc good
estimates of the crack tip opening displaccmcnt and thc Icngth of the fracturc proccss IOnc
along the prolongation planc ahcad of thc crack tip. Thcsc quantities can then be used to
calculate thc critical crack tip opcning angle associatcd with steady crack growth. Approxi­
mate models lor the fracturc process IOnc ahead of an extending crack have been used in
previous work. Wnuk (1974) has employed the strip-yielding model of Bilby ('Ilil. (1%.1)

and Dugdale (1960) (hereafter rcli:rred to as the BCSDugdale model) to formulate his
final stretch criterion for plane stress crack growth. In Wnuk's model. yielding is confined
to the aaek prolongation line, and it is assumed that the condition for continued crack
growth is the attainment of a critical incn:ment of crack orening in a slllall segment of the
yielded lOne ahead of the crack tip. These quantities define a critical crack tip opening angle
for continued crack growth. Rice and Sorenson (197R) have noted the similarity between
Wnuk's final stretch conccpt and their own critical crack tip opening angle for continucd
plane strain crack growth. In an analytical study of t~ltigue crack growth, Budiansky and
Hutchinson (197R) ha vc cmploycd a modificd version of thc BCSDugdale modd that
accounts for cyclic loading and thc rcsidually strctchcd material appended to the crack
surfaces. This model successfuly prcdicts thc fatiguc crack closure phenomenon discovcred
by Elber (1970) in an cxperimental study of f~ltigue crack growth. The Budiansky and
Hutchinson study indicatcs that fatiguc crack c10surc occurs whcn matcrial that is plastically
strctehed in the strip-yiclding zonc falls bchind the advancing crack tip and comes into
contact during the cyclic loading.
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The previous investigations of Wnuk (1974) and Budiansky and Hutchinson (1978)
establish the usefulness of the BC~Dugdalemodel for the representation ofductile material
failure ahead of the crack tip. For this reason. the BC~Dugdalemodel will be employed
in this study to represent the fracture process zone associated with a steadily propagating
plane strain tensile crack under constant loading. The fracture process zone ahead of
the advancing tensile crack is modeled as a continuous distribution of edge dislocations
with Burgers vectors parallel to the x:-axis. The complex potential functions for an edge
dislocation with Burgers vector b located at x\ = x' are

, _ lib I lib I
(l,(=) = 4n(l-v) :-x' - 4n(l-v) :1':(:1;2+ X'1/2)'

(15)

( 16)

where the first term in the foregoing equations represents the self-stresses of the dislocation
and the second term represents the image stresses resulting from the condition of zero
normal traction along the crack surface. The stress components arc related to the complex
potential functions through the equations

TilE ELASTIC SINGUl.AR FIELD DUE TO EXTI~RNAL LOADING

The remote tensile stress acting on the inlinite body containing the steadily propagating
cr~lck gives rise to the mode I singular stress field of linear clastic fracture mechanics in the
region ncar the crack tip. The complex potential functions for the elastic singular field arc

K
(P,~", (=) = ;,-(o,o:)-Ti i •__n_ ( 19)

(20)

where K is the modt: I strt:ss intensity factor. The stress components for the elastic singular
field can be obtained by using the complex potential function ofeqns (19) and (10) in eqns
(17) and (18). Introducing polar coordinates through tht: relation == , ell!, the stresses can
be expressed in the form

all = --~--';fll (0) = _.~..,., cos ~ (I-sin ~ sin ~~).
(2n,)I/- (2n,)II- 2 2 2

K K 0 ( . 0 . 30)a" = -.---- j" (0) = ---" cos -. I +Sill - Sill --- (2n,)u -- (2n,)I,. 2 2 2'

(21 )

(22)

(23)
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SUPERPOSITION OF RESULTS AND APPLICATIO:-': OF THE YIELD CO~D1TION

The stress components due to inelastic deformation in the planar slip element and
fracture process zone and the elastic singular stresses due to the remote tensile loading have
been obtained from complex potential functions appropriate for two-dimensional problems
in the theory of elasticity. Plastic deformation in a cracked body can be considered as an
interaction between the deformation field of dislocation arrays and the elastic field associ­
ated with the applied loading. The stresses. strains and displacements for the planar slip
element. the fracture process zone. and the elastic applied loading field can be superposed to
model the plastic deformation near a steadily growing plane strain tensile crack. Unknown
quantities associated with the planar slip elements and fracture process zone. as well as the
extent of the region of plastic deformation. can then be found through the application of a
yield condition.

Consider the region surrounding the crack in the upper half-plane.':2 > 0 to be divided
into N rectangular elements. Each element represents the active portion of the region R
shown in Fig. 2. 8y superposing the stresses due to (i) inelastic deformation in the N
regions R+ R associated with each rectangular element. (ii) the continuous distribution of
dislocations in the fracture process zone. and (iii) the elastic singular field of the applied
loading. the stresses at all points in the plastically deforming body can be obtained. Let 1"11

be the yield stress in shear for an ideally plastic material. Introducing the dimensionless
variables

1" ,i
: = 1\":' (24)

when: the indices C(./I = 1.2. the stresses at any point:: = '\1 +i'\'2 can be expressed as

.Y

'(0) ,\,'P (,,;) " (0) '0 (0)a,/I: = L a,/I :.~, +a,/I : +a,/I :.
,- 1

(25)

where a;'/I(::. (~) is the stress due to the inelastic deformation in thejth planar slip element with
center at (~ = ~,+ il;,. a;/I(::) is the stress due to the continuous distribution of dislocations
in the fracture process zone, and a~/I(:) is the stress due to the elastic singular lidd of the
applied loading. Using eqns (3) (14). the stresses from the planar slip dement ean be
expressed as

• P • .; I -, ° .; -, -.';. -, , ,

a I2 (:.",) = [C (:.",) cos _:i,+f)(:,,>,) SIH -:i,L'p.
2rr(l-v)

I' ,.; ,p,,; I") ,.; ') -,';. ') )"
2[11~2(:,,,,)+all(:'''/)) = ')', [I (:,,,,) cos _C(/+Q(:.",) Sin _"1./ i'p'

_rr( -\')

(26)

(27)

(28)

where c(, is the ;lIlgle of slip in the jth dement ;lnd the dot now denotes difTaentiation with
respect to the dimensionless time 1". The functions ri, 8. {'. D, P, Q are given in polar
coordinate form in the work of Oenda (1983b). The stresses due to the continuous dis­
tributions in the.: fracture process zone.: are given by

1 fi' - -a; 2 (::) = -)"-'1--'" h ('\' )H, (:: ..\') d.\·,
_rr( - \') II

(29)

(30)



Fracture process lone near tip of crack 1165

(31)

where'; (.i) is the dislocation density. and :i* is the extent of the fracture process zone along
the positive .i)-axis. The functions H). H:. H) are obtained from eqns (15)-(18). They are
given in polar coordinate form in the thesis of the author (Russell. 1987). Finally, the
stresses due to the applied loading are given in eqns (21 )-(23), which can be expressed in
dimensionless form using eqn (24).

The yield condition used in the solution consists of two requirements: (i) the maximum
shear stress at the centerpoint =. of the kth active element is equal to the yield stress in shear.
ro. and (ii) the direction of the maximum shear stress in the kth active element must coincide
with the direction J:k of the maximum plastic shear strain rate. These requirements can be
expressed in terms of the dimensionless variables by the two equations

(32)

(33)

Denda (1983a) gives an equivalent form which is more convenient for computational
purposes:

(34)

(35)

The requirement of the yield condition for t.:oint.:ident diret.:tions of maximum shear stress
and maximum plastic shear rate implies that the material is elastically incompressible with
Poisson's ratio \' = 1'2. This can he seen hy employing dimensioned variables. squaring
both sides of eqns (34) and (35), and adding the result to obtain

(36)

Equation (36) is von Mises' yield wndition for an c1astil:~lIly incompressible. ideally plastic
material.

The solution for the unknown dislocation density in the fracture process zone is
obtained by prescribing the normal stress aun along the .i I-axis ahead of the crack tip. For
this purpose it is appropriate to employ the result a.n = 5.106, obtained from the asymptotic
analysis of the mode I plane strain growing crack given by Drugan /!/ al. (1982). The
prescribed stress requirement is consistent with the assumption that steady cmck growth is
deformation-controlled and charal.:terizcd by a constant critical value of the crack tip
opening <ll1gk. As noted by Ril:e c/ al. (1980), the critical crack tip opening angle criterion
makes no reference to the normal stress ahead of the crack tip, whil.:h is essentially equal
to the Prandtl field value for both stationary and growing cracks. Instead. it reflects the fal.:t
that the strain and cral.:k opening displacement arc the only variable fe~lture$ of the ncar­
tip fields <Issociated \"ith plane strain cracks in clastic plastic rnataials.

NUMERICAL SOLUTION PROCEDURE

A system of nonlinear equations governing the steady state tensile crack growth
problem can be obtained by substituting the stresses from eqn (25) into eqns (34) and (35)
and employing the prescribed value a~~ = iT". in the fracture process zone. This procedure
gives a system of 2S+ I nonlinear equations that can be solved for the unknown quan­
tities l~.-:t.j (j = I..... tV) associated with the planar slip elements and the dislocation density
h(:i:) in the fracture process zone. The application of numerical methods to the solution of
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this system of ~quations requires discretization of th~ integrals involving th~ dislocation
dl:n"ity. For this purpos~, the integration domain is divided into 3f1 ~qual intervals ofl~ngth

i\ksh points are then placed at the center of each interval. giving

(37)

.i, = !t..i + (j - I It..i for j = I... .3n. (38)

An intl:gration formula can then be obtained for each integral by representing the integrand
by a Lagrange interpolating polynomial of degree two and integrating the result over a
suhdornain of three intl:rvals. The definition of the Cauchy principal value integral is
employed for the case where the integrand possesses a singularity of Cauchy's type. The
integrals il1\olved in the yield condition can then be ex.pressed as

(39)

for k I ..... N.

(40)

for k .'" I. .... N.

(41 )

for k = 1•...• 31/ where the notation I;U/) = I;, has belm employeJ. DetaileJ expressions for
thl: quantities fl.'/. fr/. fl.'/. arc given in the thesis of the author (Russell. 1(87).

The use of eqns (39) (41) enables us to write 2N+ 311 nonlinear algebraic equations
fix the unknown quantitks :J~. ':1.1 (j = I ..... N) anJ h, (j = I ..... 3n). The nonlinearity
can he expressed in a weaker form by making the substitutions

'I'· - .;1 cos' ')~, II - Ip . _..A,.

for i '= I V. The resulting system of equations takes the form

.to
~ " 1:1_+ L. /1,1.., -
f- t

(42)

(43)
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for k = I. .... Nand

for k = I. .... 31l. It is noted that the nonlinearity in eqns (44) and (45) is contlned to one
term and that eqn (46) represents a set of linear algebraic equations.

The system ofeqns (44)-(46) is solved by an iterative scheme. In the tlrst iteration. the
quantities j~. = 1/.}~ arc set equal to zero. After solving the resulting system of linear
algehraic equations. the quantities .}; and);.· can be calculated from the relations

I'. = I /~.k. kip ..

(47)

(4X)

for k = I..... N. The positive root is taken in eqn (47) since the requirement of positive
plastic work rate in each clement implies that ;:; > O. The quantities j~. arc now inserted
intn eqns (44) and (45) and the solution process continues. The iterations proceed until the
quantities I.I~.(I) - j~.I' III/.I~·(') computed from iterations i and i-I are sullieiently small.
When a convergent solution to the system of eqns (44) -(46) has been obtained. the anglcs
=tk (k = I..... N) of the maximum plastic shear strain rate can be calculated by using
el./lls (42) and (43) in conjunction with the physical requiremer,t that 0 ~ =to ~ Tr for each
plastically deforming clement in the upper half-plane .~~ > O.

The extent of the region of active plastic deformation in the upper half-plane :i: ~ > 0
and the length .X·· of the fracture process zone along the positive .il-axis are unknown at
the beginning or the calculations. The extent of the active plastic zone in the upper half­
plane is determined by covering a large portion of the crack tip region with a rectangular
mesh of clements and then activating N of these elcments based upon an estimate of the
size and shape of this zone. After a solution to the system of eqns (44)-(46) has been
obtained. stresses arc calculated at the center of each clement in the mesh. Inactive clements
which do not satisfy the condition

(49)

are considered to be active clements in the next round of calculations. Active elements
which hinder the convergence of the solution of the system of eqns (44)-(46) by virtue of
extremely small plastic shear strain rates .g arc considered to be inactive in the next round
of calculations. Usually two or three rounds of calculation are sufficient to determine the
active plastic zone corresponding to a given fracture process zone length .~ •.

The length of the fracture process zone .~. is determined from the condition that the
stress singularity associated with the elastic applied 10'lding tleld be cancelled by the plastic
deformation in the planar slip clements and fracture process zone. Denda (1983a) has
shown that all of the stress components due to the inelastic deformation in the planar slip
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element possess a term containing the inverse square root singularity that characterizes the
elastic field of the applied loading. From each of these terms a common factor can be
e,tracted which gives a measure of the elastic singularity cancellation associated with the
planar slip element. Physically. these singularity-cancelling parameters are associated with
the dislocation image stress field of each element. A similar singularity-cancelling parameter
can be extracted from the image stress field associated with the continuous distribution of
edge dislocations in the fracture process zone. Adding the singularity-cancelling parameters
from the .v planar slip elements and fracture process zone with the associated parameter
from the elastic singular field gives the quantity

I J \ ~
A O

_ ,.;;, '( I)m~,,"[' "(1.. 1 "") ..., . '(1. 1 . ...,) • ..., Jl
tit' - ...,(..., ---ll-~ - ~-(~I_--:) £- Ip £- .\ - )'\m cos (I'm - cos _:I, +Sin (I'm! - SIO _-:I., I

- _IT _1! \ ,_ 1 m~ 1

I n I o[ ° I - I - I ]
- 4 (I ') L ,,8.\ 9h,,; c ~..f-c- +6hl l; I :1 ~ +9h,I;'.IC °n: - \ I; ~ 1 .\ 11; c .\ 11; I .\ 11;

(50)

where .~:". <1>/" (m = 1..... 4) are the polar coordinates of the four corners of the active
portion of planar slip elcmenlj. The final summation in eqn (50) is obtained by using the
numerical integration scheme employed previously to discretize integrals involving the
dislocation density. It is convenient to norm.i1ize L\e by defining L\(;. = 2(2n:)' :L\(;. The size
of the fracture process zone .i· corresponding to a gin:n mesh of planar slip elements is
adjusted until L\(;. ~ O.

The crack tip opening displacement. 'i". associated with the fracture process lone
ahead of the propagating crack tip is obtained through the relation

(51 )

Introducing the dimensionless variable C)II = cju/[K~ / JHol and the numerical integration
scheme discussed previously yields the formula

n

JII = L ~8.i(96ll; ~ +66 \k 1 + 9/; ,d
k-I

for numerical evaluation of the crack tip opening displacement.

(52)

NUMERICAL RESULTS

The numerical solution procedure described in the previous section has been
implemented to study the intluence of the fracture prm:ess zone on the steady state. plane
strain tensile crack growth problem. The region of active plastic deformation near the
advancing erack tip was determined by using a series of increasingly refined planar slip
element meshes to identify the region in the upper half-plane where the yield condition is
satisfied. The length of the fracture process zone was determined through the requirement
that the stress singularity associated with the elastic applied loading lield must be cancelled
by the pl'lstic deformation in the planar slip elements and fracture process zone. J70r this
purpose. the two elements nearest the crack tip were suhdivided several times in order to
simulate the intense yielding that occurs in this region.

The solution corresponding to the finest clement mesh employed in the calculation is
shown in Fig. 3. The planar slip clement mesh consists of only 106 clements. as compared
to the \660 clements used in Sorenson's (1979) finite element analysis of plane strain tensile
crack growth. As noted by Denda (l983b). the planar slip element method requires a less
elaborate clement mesh because the intluence of the active clements on the stresses. strains.
and displacements is calculated directly through the use of potential functions. In contrast.



Fracture process zone near tip of crack 1169

, , , I I , I

i-

f I- II '

f. /
. \

I II I- '\ .\ It -
/

~ I I'V
- I , \ \ I I V
. I ,

"
'\ \ I / Vr,' , "- 1"- r, -h:lit- /

I I

00

0.03

0.01

0.05

0.04

0.02

. 0.05 . 0.04 ·0.03 ·0.02 ·0.01

Xl/(K2/t~)

0.0 0.01 0.02 0.03

Fit:- J. Mesh ami numerical solution for the planar slip clements when the fracture process zone is
im:luded in the model.

the tinite dement method requires a much larger mesh because the inlluence of remote
ekments on the deformation at a given point must be propagated through intermediate
ekments. These intermediate dements must he highly relined to prevent loss of numerical
aceur~ICY. For this reason it is expected that the planar slip clement method gives results
lhal arc l.·ol1lpdilive in accuracy with finite dement method results obtained on much more
ddailed meshes.

In the 106 clement mesh shown in Fig. 3.40 clements were determined to satisfy the
yield condition. Thirty-three mesh points were employed in the fracture process zone, giving
a total of 113 equations in 113 unknowns to be solved during each iteration. Fifty iterations
wen: sulliciellt to obtain al:Cllrate solution to the system of eqns (44}-(46). The magnitude
of the pl"stic she"r strain rate I~~ and the din.:etion of slip :x arc represented as scaled line
segments emanating from the centers of the active clements of the mesh. The solution of
the elements ncar the cral:k tip is not shown due to the large magnitude of the plastic shear
strain rate in this region.

Figun: 3 n:veals four distinl:t sel:tors of deformation in the region ncar the advancing
crack tip. In terms of the polar angle () measured from the positive .~ I-axis, they arc

(i) a plastically dd'orming sector located in the region 0 ~ () ~ 45' where the slip
angle is nearly constant at :x ~ 45 ,

(ii) a plastically deforming I:entered-fan sector located in the region 45' ~ () ~ 135'
where the slip angle :x ~ (1 for clements near the crack tip.

(iii) an elastically deforming sector located in the region 135 ~ () ~ 161',
(iv) a second"ry plastil:ally deforming sector located in the region 161 ' ~ () ~ 180" in

which the stip <lngle is nearly constant <It :t ~ 135 .

Th.: length of the fr<lcture process zone corresponding to 97.3% singularity cancellation
was determined to be .~* = 0.0007. whieh is less than the horizontal extent of the smallest
dement <ldjaccnt to the crack tip. Note that the spatial coordinates in Fig. 3 have been
normalized by the quantity K 11'd" where 'l'o is the yield stress in shear. In finite clement
studies the sp<ltial coordin<ltes arc often normalized by K~/(1~, where (10 is the yield stress
in uni<lxi<ll tension. Comp<lrlsons between dilrerent sets of results can be obtained by taking
all = (3)1 1'l'0.

The solution for the S<lll1e clement mesh in the absence of the fracture process zone is
shown in Fig. 4. In contrast to the results shown in Fig. 3, only 75.5% singularity can­
cellation is obtained by the planar slip elements acting alone. The configuration of active
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c!cmcrHs and the fcatures of thc solution for the clements outsith: the ncar-tip region arc
similar for thc two cascs. The glohal elasti(.' plastic solution of Fig. 4 also agrccs closely
with thc planar slip clement results ohtained hy Denda ( I9XJa). The inlluence of the fracturc
proccss zone is apparent from an examination of the solution in the ncar-tip elemcnts not
shown in Figs 3 and 4. For this purpose, numerical n:sults for the ncar-tip clements arc
givcn in Table I. Thc quantities ::: I', :elll rcler to the slip clement solutiolls when the fraeturc
process zone is included and the quantities ~:I: :), -:x';, refer to the slip clement solutions when
the fraetun: pro(.'css zone is omilled. The quantity () is the polar angle at the ccntcr of the
dCl1wnt and :x" is thc -slip angle pn:dicted at the ccnh:r of the clemcnt by the aSYlllptotit.:
ul1ulysis of Drugan ('/ til. ( 19X2). Elemcnts with ccnterpoints lying in the elastically dcforming
scctor arc indicated hy a blank in the appropriate slip angle entry in the table. A diagram
showing the location of the numhered clements is given in Fig. 5.

Tahle I. Numerical results for ncar-tip e!cments
._----~._-----.-_.

tJ Xi II -Xl.!l
1 .•

Element tJegn:es) •~ J 11 .~ 1 ~1 (degrees) (degrees) (Jl'grL'l:s)
'" lp------_._-_.._.._- _,,_.__,~_,~___~,__,_,__,,__u__,,__ • ___; -"--_.--_.-

I 165.4 0 0 135.0
~ 165.1 0 0 135.0

.' 166.5 0 0 1.'5.0
4 144.2 400iUJ 5327.3 llO.{l(, 96,tH
5 31'.60 3%10 2·B4.5 57.5ii -NAil 45.l!
6 14'13 lOJ7n X6f}.2 ..'150 41'52 45.0
7 15.64 4011 4l)'17 ..'1.<)4 50A5 .t5.0
S 14.'13 165.3 11'1'.7 4(d)5 .t6,l)') 45.0
<} 142.3 ~_1726 221 LX DIS 126.5

Ifl Il.U 4n.9 1597.5 lll·t6 X6.'1
II 6('.6X 3n67.6 2469.5 7U} 65A 66.6&
12 37.72 IISI1& 7tH.X 54.% 54.74 45.0
lJ 1.. l.X 67x.2 5x".9 127.0 In2
14 113.0 397.X 946.0 113.1 100.3
15 67.04 1677.3 151U 63.51 62.27 67.04
Iii 3R.19 2·.17.1 1545 52.11 5"5~ 45,0
I7 141.6 .n2,3 135.1 1111.1 1.10.1
18 111.8 IJ 1.2 1%.9 IOX.2 101.5
It) 67..~1 (145.1 607.9 (, I.NI 61AX 67.11
10 JK.-O Ifill. 1 1..6.3 -lX,X5 50.56 4Hl

._---------~~--
.._.~- .~"~ - - -~-_._-



0.01

0.005

0.0

Fracture process zone near tip of crack

-

17 18 19 20

-
13 14 15 16

1
9 I 10 11 112

8

2
3 I 4 5 1 6

7

I I I

1171

- 0.01 -0.005 0.005 0.01

Fig. 5. Diagram of ncar-tip elements.

Examination of Tahle I reveals that the greatest ditferences in elemental strain rate
magnitude for the two numerical solutions are found in clements 4,5, 10, II and 14. Of these
five elements, elements 4, \0 and 14 are also characterized hy an appreciahle discrepancy in
the two numerically calculated slip angles. These differences arise from the incomplete
elastic singularity cancellation associated with the planar slip elements acting alone. In the
solution ohtained with the fracture process zone, it is noted that the plastic shear strain
rates };I~1l in elements 10 and 14 are rather small, and that the slip angles 'X(II for these
elements are 104.6 and 113.2', respectively. These results, along with the result that
':/.( I) = IIO.Of!· in element 4, suggest some curvature in the boundary hetween the centered­
t~1ll plastic sector and the elastic sector behind the crack tip. This boundary is located at
() = 135 for the far field elements shown in Fig. 3 and curves toward the () = 110' direction
for the clements very dose to the crack tip. This curvature is consistent with the asymptotic
analysis of Drugan 1'1 al. (1982), which predicts that the boundary betwccn the centered­
fan sector and the clastic sector is at () = 112.1'.

Denda (1983a) has found that as the ncar-tip clement mesh is refincd toward zero
clement size, the planar slip elements are capable of cancelling the entire clastic singularity
associated with the applied loading. In this limit the results for the planar slip elements
acting alone will converge toward the results of the asymptotic analysis based upon the
infinitesimal deformation assumption. In particular, the crack tip will possess the zero
crack tip opening displacement and infinite crack surface slope that arc indicative of
logarithmically singular plastic strains. In this same limit, the results for the planar slip
element solution with the fracture process zone model will differ slightly from the asymp­
totic solution in the ncar-tip elements. A small fracture process zone will remain ahead of
the crack tip, and a discrete value of the crack tip opening displacement will be obtained.
When viewed in this way, the fracture process zone model is an approximate method of
accounting for the presence of large but finite strains in the material ahead of the crack tip.
The determination of the true fracture process zone size and crack tip opening angle
associ.Hed with complete refinement of the clements adjacent to the crack tip is discussed
in the next section.

The slip lines and clastic-plastic boundary constructed from the numerical solution
that includes the fracture process zone arc shown in Fig. 6. The plastic zone is composed
of two lobe-shaped regions containing the primary plastic sectors (i) and (ii) discussed
previously and a region along the crack surface containing the secondary plastic sector (iv)
discussed previously. The plastic region ahead of the crack tip has its maximum extent
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along the ray (J = 74' and possesses centered-fan type slip lines that curve toward the
positi\er I direction. The curvature of the slip lines in the plastic region ahead of the crack
tip has becn predicted by Rice (I96X) in a discussion of the stationary tensile crack. The
higher-order asymptotic analysis of Drugan (19X6) predicts a similar type of curvature for
the slip line that forms the border hetween the plastically deforming sectors (i) and (ii).

The looe-shaped region of plastic deformation behind the crack tip has its maximum
extent along the ray (J = 132 and posscsscs centered-fan type slip lines that curve toward
the .r; direction. This second looe of plastic deformation is not present in finite element
results for plane strain crack growth. e.g. Sorenson (1979) and Sham ( I9XJ), but it has been
observed in previous work oy Delllht (19X3a) using the dislocation-based planar slip ekment
method. Il has also been observed in recent work by Denda and Lua (I9X6), who studied
steady state plmle strain crack growth using a numerical method that is based upon the
Green's function representation of inelastic deformation by a continuous distribution of
force dipoles or wuples. One possible re.tson for the discrepancy in the results obtained
with the finite dement method and those obtained with the Green's function methods is
the procedun:s that arc used to mouel crack growth. Most of the detaileu tinite clement
studies usc a Llgrangian representation of crack growth. In this approach the coordinate
system remains fixed and the crack propagates from noue to node in the clement mesh. In
contrast. the Green's function methous (baseu upon either continuous distributions of
dislOl:ations or continuous distributions of force dipoles) usc an Eulerian representation of
crack growth. In the Eulerian approach. the coordinate system moves with the extending
crack and time rates arc calculated using the material derivative. The Lagrangian approach
is suitable for stuuies of transient crack growth following fracture initiation. while the
Eulerian approach is more appropriate for studies of steady crack growth. In this regard.
a highly detailed Euh:rian finite clement study of steady crack growth would be useful for
clarifying the ditlcn:nces between the finite clement results and the planar slip clement
results in the plane strain cmck growth problem. The methodology for such a work has
been developed by Dean and Hutchinson (1980), and the results would be a valuable
counterpart to Sham's (1983) detailed Lagrangian finite clement results for transient plane
strain crack growth.

Finally. Fig. 6 shows that a secondary plastic zone comprising the plastically deforming
sector (iv) mentioned earlier extends along the surface of the crack. As noted by Drugan
ct al. (1982). the existence of this region is necessary because material clements passing
through the centered-fan sector very close to the crack tip acquire very large plastic strains
which necessitate further yielding to avoid unbounded residual stress. The calculations
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presented here indicate that the yield condition is barely satisfied in the secondary plastic
zone and that the plastic shear strain rate in the active planar slip elements of this region
are rather small. For this reason, the secondary plastic zone has been terminated at
.i l = -0.05. It is expected that the influence on the near-tip elements and fracture process
zone of any marginally active elements that may have been deleted is negligible.

A CRITERION FOR DUCTILE STABLE CRACK GROWTH

The computational results for the steadily propagating plane strain tensile crack with
fracture process zone can be used to clarify the fracture criterion proposed by Rice and
Sorenson (1978). These authors suggest that continuing ductile stable crack propagation is
characterized by the attainment of a critical crack opening displacement at a characteristic
material distance behind the advancing crack tip. The characteristic material distance in
this crack growth criterion can be identified with the size of the fracture process zone.

The calculations for the planar slip clement mesh with fraclure process zone indicate
that the elements adjacent to the crack tip play an increasingly dominant role in the elastic
singularity cancellation when they are refined to smaller and smaller sizes. This trend is
manifested by the fact that the computed fracture process zone size becomes smaller and
smaller with increasingly refined near-tip element meshes. The true fracture process zone
size will be the value that is obtained in the limiting case of an infinitely relined mesh of
elements adjacent to the crack tip.

The relalionship between fracture process zone size and crack tip element area is
illustratcd in Fig. 7. The plot has been constructed using compuled fmcture process zone
size results from four successive rclinements of the elements adjacent to the crack tip. Fitting
a Lagrange interpolating polynomial 10 the data points and eXlrapolating to zero crack tip
element area leads to an estimate of

K~

x· = 0.00060 I ,
tij

(53 )

for the true si/e of the fr,u;ture prOl:ess zone. This conlirms the prediction of Rice and
Sorenson (llJ7g) that Ihe si/e of the fracture process zone under conditions of small-scale
yielding and plane strain is exceedingly small. The result of equation (53) can be contrasted
with Dugdale's strip-yielding zone si/e of x· = (n (24)( K! / d,) for conditions of small-scale
yielding and plane stress.

The fraclun.: criterion given by Rice and Sorenson (1978) can be stated in the form

(54)
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Fig. 7. Determination of true fracture process lone size.
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which implies that the ratio of the crack tip opening displacement 6u to the fracture process
zone size x· attains a constant critical value during crack propagation. This critical value
depends only on material properties. Equation (54) can also be interpreted as a statement
that ductile crack growth is characterized by an invariant crack tip opening angle. For this
reason. the relationship is often referred to as the critical crack tip opening angle criterion.

In the model of the steadily propagating plane strain tensile crack developed in this
work. 60 is the crack tip opening displacement calculated from eqn (52) and x· is the
computed fracture process zone size. Using the same four element meshes employed in the
estimate of the true fracture process zone size. the ratio <>0/ x· was found to be nearly
invariant with respect to near-tip element mesh refinement. The constant value of Jo/x·
during mesh refinement establishes the accuracy of the crack tip opening angle result
obtained in this paper. Taking the mean value from the four ekment meshes and using
dimensioned variables. this result can be expressed as

(50 III= 13.316-£,x·
(55)

where Young's modulus £ = 2;l( I + v) and Poisson's ratio v = I· 2. The maximum deviation
from this result amongst the four element meshes considered is less than 6'X,.

Rice and Sorenson (197X) have interpreted the data of Clark e( al. (1978) in tcrms of
the critical crack tip opening anglc criterion. The results were obtained from crack growth
tests in small fully plastic bend specimens of pressure vessel steels. For the entire group of
materials tested. values ranging from ('lu/x· = 9.89(IIl/ E) to ('lIl/x· = 534.0(ru/ E) were
observed. The numerically calculated result ofcqn (55) falls into the lowercnd of this range.
Although thl: tl:st results of Clark ('/ al. ( I97S) arc rl:presl:ntative of the initial stage of crack
growth under largc-scak yielding clmditions. this agrl:l:ml:nt indicates that the fracture
process WIll: model descrihl:d in this paper givl:s physically rl:ason,lbh: valul:s of the crack
tip opl:ning angk.

CONCL.USIONS

The numerical study of the fracture process zone near the tip of a ste,ldily propagating
plane strain tensile crack suggests the following conclusions.

( I) The inlluence of the fraclUrl: proCI:SS zone is confined to the deformation field close
to the erat:k tip. Inside this region. the fracture process zone removes the crack tip plastit:
strain singularity which is present in models that do not account for the failure of the
material ,It the crack tip. Outside this region. the macroscopic plastic zone possesses features
revealed by earlier investigations of plane strain tensile crack growth.

(~) The sizl: of the fracture process zone ahead of the propagating crack decreases with
refinement of the ncar-tip clement mesh. A small but appreciable fracture process zone
remains when the area of the clements adjal:ent to thl: crack tip is I:xtrapolated to zero. The
size of the fracture process zone for a moving crack with a macroscopic plastic zone in the
vicinity of the crack tip is two orders of ITI4lgnitude smaller than the classical Dugdale
fracture process zone size based on the elastic deformation of the crack.

(.\) The numerical results for crack tip opening displacement and fracture process zone
size can be employed to obtain an accurate estimate of the critical crack tip opening angle
associated with ductile stable crack growth. The numcric,t1ly calculated crack tip opening
angle is found to be physically reasonable when compared with the results of crack growth
tests in pressure vessel steels.

Ackf/(Jllkd,,''''''''''J - The author wishes to e~pn:ss his sincere gratitude 10 Prof,:ssor N. C. Huang of Ihe Universily
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